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⊥Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,

Switzerland
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Efficacy and safety of drugs depends critically on their residence time.1,2 Indeed, koff

values—the drug unbinding rate constant, corresponding to the inverse of the residence

time—correlates with clinical efficiency even more than binding affinity.3,4 Hence, the koff

value is one of the crucial parameters that current drug design strives to improve.5,6 While

experiments face challenges to identify and characterize rate-limiting transition state(s),

simulation approaches are able to predict free energy landscapes and residence times.7 Tech-

niques devoted to this aim range from long-time molecular dynamics (MD) with specialized

hardware,8 to a variety of different enhanced sampling methods such as random acceler-

ation MD (RAMD),9,10 hyperdynamics,11 conformational flooding,12 Markov state models

(MSMs),13 dissipation-corrected targeted MD14 and Infrequent15 or Frequency Adaptive

metadynamics.16 The latter three approaches have also predicted koff values for ligands

binding to cytoplasmatic proteins. The values differ by one or two orders of magnitude

from experiments.13,17–19 The discrepancy, irrespective of the force field used (either Am-

ber99SB20/GAFF21 or CHARMM22* 22), could be caused by a variety of factors, including

force field accuracy, molecular modeling procedures, and sampling issues. Here, we use a

multistep simulation approach to address this important issue. We focus on a ligand, iperoxo

(Fig.1 and SI1), routinely used in neuroimaging in the clinics. The ligand targets the human

muscarinic acetylcholine receptor 2 (M2). Overall, the system consists of 1̃50, 000 atoms

(Fig.1).

First, we attempt to calculate the koff value of the ligand by Amber14SB force field23-

based Well-Tempered24 and Frequency-Adaptive MetaD. To minimize errors due to the mod-

eling procedure, we use the same pH and ionic strength as in the experimental conditions.25

We use two approaches to calculate the drug RESP charges. The first one is the Amber

standard methodology, based on HF/6-31G calculations (RESP-HF).21 This has been used

to predict the free energy landscape associated with ligand binding to the protein,26 with a

calculated binding affinity in excellent agreement with experiment. The second methodol-

ogy is based on density functional theory (DFT) with the B3LYP27–29 exchange-correlation
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functional (RESP-B3LYP).

Then, we perform quantum mechanics/molecular mechanics (QM/MM) calculations.

The QM region consists of the ligand and its interacting residues and it is described by

the same B3LYP functional as in the second parametrization. The remaining part is treated

as in all the previous calculations performed here, with the Amber14SB force field.23

The simulations based on RESP-HF charges turn out to face difficulties in obtaining a

reasonable estimation of the transition-state free energy (and thus koff value). Those with

RESP-B3LYP charges lead to a calculated koff of 3.7 ± 0.7 · 10−4 s−1. This value is more

reasonable but still much smaller than the experimental one (1.0± 0.2 · 10−2 s−1). Compar-

ison of the force-field-based simulations with those based on QM/MM shows a remarkable

agreement between the ab initio and the force field estimation of the ligand/protein binding

energy (Fig.1). However, this is not the case for the transition state. Our analysis indicates

that the lack of polarization may be one of the key factors causing this discrepancy, which

in turn affects the accuracy of the koff calculation.

Unbinding process using the RESP-HF parametrization. MetaD-based calcu-

lations of koff values require the the free energy landscape of ligand unbinding pathways.

Previously, we have predicted this for the ligand iperoxo and its target M2 muscarinic recep-

tor in its active state by using well-tempered metadynamics.26 The calculations were based

on the Amber14SB force field23 for the protein. The RESP charges for the ligand were cal-

culated at the HF/6-31G* level of theory (RESP-HF hereafter). Two different unbinding

pathways emerged (here noted with I and II)26 (see SI, Fig.2). Pathway I is the lowest in

free energy. Here, the ligand starts from the bound state, rotates around the axis formed

by the alkyne bond, passing through the transition state 1 (TS1, Fig.2), to finally reach

state A. After this step, we observe a rotation of the entire ligand with the trimethylam-

monium group as a pivot (transition state 2 - TS2),TS2 is the rate-limiting step. A salt

bridge between the trimethylammonium group and ASP103, present in the bound state, is

broken here and the overall number of intramolecular hydrogen bonds between protein and
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the ligand is reduced (Fig. 7 in the SI) and substituted with other H-bonds with solvent. A

slightly different rotation around the same pivot can lead to state B. This second rotation

does not lead to unbinding, and is not further considered here. After reaching state C, the

trimethylammonium group breaks the salt bridge formed with ASP103 (transition state 3-

TS3) and moves toward the extracellular part, reaching the fully solvated state. The rate-

limiting step is TS2. Pathway II is identical to I until the ligand reaches state C. Here, the

rearrangement of the extracellular loop 2 (ECL2) of the receptor limits the possibility of the

ligand to reach the solvated state right after visiting state C, forcing it to perform a further

rotation, reaching the last metastable state D. After that rotation, the ligand breaks the

salt bridge formed with ASP103 and it moves towards the solvent, completing its pathway

to solvation.

Here we evaluate the koff by a multistep approach as in Casasnovas et al.17 Because

kinetic calculations are very expensive, we explore only the lowest free energy pathway, I.26

For this, we identify the path collective variables (pathCVs) spath and zpath.
31 These are

particularly appropriate to study a single pathway between two reference states, limiting the

motion of the system only around this predefined path. spath defines the progression along

the pathway, while zpath samples deviation from the reference path (in our case I). Next,

we perform Well-Tempered-MetaD24 to calculate the free energy as a function of spath and

zpath. Finally, we use Frequency-Adaptive MetaD,16 for the actual calculation of koff.

The definition of a pathCV is based on a metric that measures the distance of instanta-

neous configurations from the path. In the first applications of pathCV,31 the metric chosen

was based on root mean square displacement (RMSD) with respect to the initial bound

state. In our case, having seen the presence of multiple intermediate states along pathway

I26 (Fig. 5), we prefer to define our metrics based on a contact map based on the ligand–

protein atom pairs that are crucial for the stabilization of the intermediate states (see SI for

detail). To obtain a sequence of conformations along the unbinding trajectory, we employed

Ratchet&Pawl MD32,33 in a two step-approach. First, we forced our system to perform its
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unbinding transition using as CV the distance between the binding pocket and the center of

mass of the ligand (in the same spirit as a previous work34); from these structures we built

a first pathCV. As a second step, we apply Ratched&Pawl to this first pathCV. From the

set of conformations obtained during this run, we built the final pathCVs that we employed

in the MetaD simulations.

Unbinding process using the RESP-B3LYP parametrization . Multiple-walkers35

Well-tempered24 MetaD along the pathCV previously obtained lead to a large number of

recrossing events in all the 10 replicas. The calculated free energy surface along pathway I

(Fig. 2) shows that the unbinding process was the same as that obtained by RESP-HF26

calculations (Fig. 2 in the SI). In particular, all the intermediate states identified by the

two setups are the same. Therefore, we use the same pathCVs for both RESP-HF and

RESP-B3LYP Frequency-Adaptive MetaD16 calculations of koff.

Calculations of koff. We performed 10 different Frequency-Adaptive MetaD16 runs,

biasing both spath and zpath. For RESP-HF, the bias needed to perform the first ring

rotation from bound state to state A, in the first run exceeded 140 kJ/mol. This bias

corresponds roughly to a residence time in the order of years (because the acceleration factor

is exponentially proportional to the bias deposited – see SI). Therefore, this parametrization

could not be used for the calculations of the koff. For RESP-B3LYP, 5 production runs

could be collected. They covered 0.9 to 1.7 µs, for a total simulation time of ∼ 8µs.1

The resulting distribution of calculated residence times (Fig. 3) was fitted with a Poisson

distribution. From this, we obtained a residence time 2.7±0.5·103 s and a koff = 3.7±0.7·10−4

s−1. To validate the correctness of the calculation performed, we performed a Kolmogorov–

Smirnov test between the obtained distribution and the theoretical one.36 The p-value turned

out to be 0.87. This shows that the obtained distribution is statistically indistinguishable

from a theoretical rare event distribution.

In conclusion, for RESP-B3LYP calculations we observe a rare event (as confirmed

1Other 5 runs had to be removed because they deposited bias on the transition state, invalidating the

sampling performed.15
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respect to the solvated state). We use a QM/MM approach as implemented in the MiMiC

multiscale interface.37,38 The QM part of the system consists of the ligand and its interacting

groups (Fig. 5a-c, See Methods for details). It is treated at the DFT level, using either the

B3LYP27–29 or the BLYP27,28 exchange-correlation functionals. The rest is described by the

Amber14SB force field,23 as in all the other calculations presented in this paper. The energy

of the total system is calculated by adding the QM/MM interaction energy to the QM and

MM energies, while that of the ligand is given by the QM energy. The ∆∆E values are also

calculated at a purely classical force field (CFF) level using REST-B3LYP.

In the bound state ∆∆E, calculated for the same 10 representative conformations, turn

out to be very similar using the force field and DFT (-17.3±1.5 kcal/mol (CFF) and -

18.1±3.1 (B3LYP)/-18.1±3.1 (BLYP) kcal/mol), i.e. the values are not significantly affected

by the exchange–correlation functional (Fig. 4, Table 2 in SI). Increasing the number of

representative conformations to 45 and 90, calculated for CFF and BLYP does not modify

significantly this picture (-17.7±0.5(CFF) and -16.8±1.8 (BLYP) and -20.1±0.3(CFF) and

-18.9±1.5 (BLYP) kcal/mol, respectively Fig.4 or Table 2 in SI).

Taken together, these results are consistent with previous Well-Tempered-MetaD-based

free energy calculations using RESP-HF, which showed excellent agreement between cal-

culated and experimental affinities for this26,34 and other systems. This is expected and it

is indeed confirmed by countless examples, both in protein–ligand39 and protein–protein40

interactions. This further supports the conclusion that modern force-field-based calculations

accurately predict ligand binding affinities.

A dramatically different scenario takes place at the transition state of the unbinding

process, TS2. Here the ∆∆E values obtained with the force field (-17.8 ± 1.3 kcal/mol)

differs significantly from the DFT ones, while the latter are still similar to each other (-12.8

± 2.9 (B3LYP)/-13.2 ± 2.8 (BLYP) kcal/mol). The trend is preserved when the number of

conformations is increased (-17.0±0.6(CFF) and -12.1±1.7 (BLYP) and -17.5±0.4(CFF) and

-12.4±1.4 (BLYP), for 45 and 90 conformations, respectively, see Fig. 4 or Tab. 2 in SI)).
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lower the residence time. However, simply adding a correction might not be enough. Indeed,

using more accurate potential energy functions (coming, for instance, from apt polarizable

force fields44) could give a different pathway and thus a different transition state, as already

suggested.45 In addition, the entropic contribution to the free energy of the transition state

may be affected by the accuracy of the potential energy surface of force fields.

The koff constant is exponentially related to the height of the free energy barrier for

dissociation. Small errors in the force field may therefore introduce large errors in the koff

of drugs, a key parameter in pharmacology. Here, we take iperoxo, a superagonist, and

we find that the bound state to its target M2 receptor is excellently described by both the

RESP-HF and the RESP-B3LYP parametrization of the ligand effective point charges.

This confirms the adequacy of the classical force-field representation in the minimum-energy

states of the system. Thus, although the electrostatic parametrization in AMBER currently

lacks polarization of the system, a high level of accuracy has been achieved by tuning all

the parameters of the force field for more than 4 decades.46,473 In contrast, the accuracy

of the force field at the transition state appears to be limited.45 This may be caused, at

least in part, by the fact that standard non-polarizable force fields cannot capture the slight

changes of electronic polarization and charge transfer effects (Fig. 5) on passing from the

bound to the transition state. Furthermore, a more detailed representation of the interaction

could in principle find different unbinding pathways, that can change the energetics of the

intermediate states. Polarizable force fields,44,48,49 reactive MD,50 and/or corrections of the

free energy landscape derived from quantum mechanical calculations45 might alleviate this

problem. Similar and possibly even more severe issues may be expected in other unbinding

processes, such as those involving protein/protein and protein/DNA complexes.

3Although the total energy function is highly accurate, its single contribution to electrostatics may not

provide the electrostatic energy.
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Computational Methods

System preparation. We followed a similar protocol as that of ref.26 We obtained the

structure from the protein data bank (PDB code: 4MQS51), parametrized the ligand us-

ing GAFF,21 and embedded it in a neuronal-like30 membrane. The drug charges were ob-

tained, after an initial geometry optimization, by restrained electric potential fitting method

(RESP)52 with HF/6-31G* (RESP-HF) and B3LYP/6-31G* (RESP-B3LYP) levels of

theory. Then the system was solvated, ions were added to reach the experimental ionic

force, and finally minimizing and equilibrating the system (details in the SI). All the simu-

lations were performed using GROMACS 2018.4.53 patched with PLUMED 2.5.54

rMD Simulation and pathCV identification. To identify a collection of confor-

mations to set up our pathCV variable,31 we used Ratchet&Pawl MD.32,33 As an initial

ratcheting coordinate, we considered the distance between the center of mass of our ligand

and the center of mass of the pocket (defined by TYR104, SER107, VAL111, PHE195, and

TYR239), projected along the axis normal to the membrane. We fixed the bias factor to

k = 500 kJ/mol/nm and the final ratchet coordinate to rfinal = 2.5 nm. After 10 different

20-ns long rMD runs with these parameters, we selected 11 frames that describe well the

progression of the ligand toward the solvent, and we used them to define a pathCV based on

the contact map55 between a list of atom pairs of the ligand and the receptor (list in the SI).

With this variable, we performed 10 new 20-ns long rMD runs to verify and eventually refine

the new variable, choosing again by visual inspection 11 different frames from the unbinding

trajectories and redefining a final pathCV that was then used in our MetaD simulation.

Well-Tempered MetaD along the pathCV. Using the pathCV as identified above,

we performed multiple-walkers35 Well-Tempered MetaD24 along the zpath and spath using 10

different walkers. We set the bias factor to 24, an initial Gaussian height of 1.2 kJ/mol, and

a frequency deposition of 1 ps−1. To limit the phase space exploration to path I only, we

prevented our system from reaching pathway II, by putting a restraint to avoid its motion

along that pathway (i.e. we put a harmonic wall at zpath = 0.25, where paths I and II
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diverge). The total simulation time was 1.8 µs. The free energy surface was reweighted a

posteriori with the Tiwary and Parrinello algorithm.56

Frequency-Adaptive MetaD. We carried out 10 different Frequency-Adaptive MetaD16

runs. The approach is a variant of I-MetaD15 that speeds up the calculations (details in SI).

We performed 10 different Frequency-Adaptive MetaD runs, with a bias factor of 24, an ini-

tial Gaussian height of 1.2 kJ/mol, an initial frequency deposition of 1 ps-1, an acceleration

parameter θ = 100 (details in the SI), and a minimum frequency deposition of 10−2 ps−1.

Out of all simulation performed, 5 have deposited bias on the transition state, and thus we

discarded them, obtaining the 5 residence times from the remaining simulations.

QM/MM single point calculations. A selection of N=45 or 90 structures associated

with the Bound, TS2, and Unbound states (Fig. 2) underwent 1000 steps of energy mini-

mization using the steepest descent algorithm at the CFF level. Then, for each structure,

we considered the total system, the rest (i.e. the system without the ligand) and the ligand

without the systems (i.e. in vacuum). Overall, 270 structures were considered.

The QM regions in the total system consisted of the ligand, and the side-chains (up to

the -Cβ) directly interacting with it as well as water molecules within 4.5 Å from it. They

ranged from 196 to 308 atoms (see Table 3 in SI). The QM regions of the rest were the same

except that the ligand was not included. They ranged from 165 to 277 atoms. Those of the

ligand included only the latter (31 atoms).

The QM part was described at the DFT level (QM part, Fig. 2), using either the B3LYP

or BLYP exchange–correlation functional.57 A plane-wave basis set with a cutoff of 90 Ry was

used. The core electrons were described through norm-conserving Troullier–Martins pseu-

dopotentials.58 Isolated system conditions were achieved by using the Martyna–Tuckerman

scheme.59 For the Bound and TS2 states, (i) covalent Cα-Cβ bonds across the QM/MM

interface were described by an adapted monovalent carbon pseudopotential;60 (ii) the net

charge of the residues considered at QM level were reweighted to their sidechain atoms by

neutralizing the sum of the partial charges of the remaining backbone atoms in MM region.
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For the total system and rest, the atoms other than those in the QM regions (’MM region’)

were described using exactly the same setup and force field as for the metadynamics. The

interactions between the QM and MM parts were described as in ref. 37: the electrostatic

interactions were calculated explicitly for MM atoms that are within 30 Å of the centroid

of the QM part, whereas the interactions with the rest of the system was evaluated using

a 5th-order multipole expansion of the electrostatic potential.37 In all the calculations, the

Grimme’s correction61 was used to describe dispersion interactions.

Single point electronic structure calculations were performed, with a convergence criteria

of 10−7 au, using the highly scalable MiMiC-based QM/MM interface,37,38 which combines

CPMD 4.162 with GROMACS 2019.4.63

The ligand binding energy ∆E was calculated either at QM/MM (∆E(B3LYP/BLYP))

or at the classical force field (CFF) (that is, at the the RESP-B3LYP) level (∆E(CFF)).

It reads

∆E=Etotal−Eligand − Erest (1)

where Etotal and Erest are the potential energies of the total system and of the rest (given by

summing the QM energy with the MM energy and the QM/MM interaction energies), and

Eligand the potential energy of the ligand.

We computed ∆E at BLYP and CFF levels for N=45 and N=90 conformations for each

state, in order to verify the consistency of our evaluation. To verify the same effect at a higher

level of theory, we chose 10 structures covering the same spreading range of the calculated

energies at the BLYP level for the more expensive and accurate B3LYP calculations4.

The change in electron density upon ligand binding was calculated at the B3LYP level

for N=10.

∆ρ = ρtotal − ρligand − ρrest (2)

Here, ρtotal is the electron density of the QM part embedded in the MM part of the total

4For comparison, the statistical estimate at BLYP and CFF were re-evaluated for the 10 structures.
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system, ρligand is that of the ligand and ρrest is that of the rest.

The electron charge transfer (CT) associated with atom i of the ligand reads:42

∆Q(i) =

∫
V Pi

∆ρ(r) dr (3)

The integral is solved numerically over the grid points within the Voronoi partition,42 or

Bader’s atom in molecules partition64 of atom i (V Pi). An in house code (cpmd-cube-

tools: https://pypi.org/project/cpmd-cube-tools/) and the Bader code (Bader charge anal-

ysis: http://theory.cm.utexas.edu/henkelman/code/bader/) were used, respectively.

The CT effect of the whole ligand molecule reads

∆QCT =
∑
i

∆Q(i) (4)

An estimation of the change in charge distribution is given by electric polarization as:

∆QPol = |∆Q(+)|+ |∆Q(−)| (5)

where, ∆Q(+)=
∑

i ∆Q(i), i ∈ {∆Q(i) > 0} and ∆Q(−)=
∑

i ∆Q(i), i ∈ {∆Q(i) < 0}.
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